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Autonomous vehicles like inland vessels require reliable information from on-board systems and surrounding objects
like encountering vessels in the environment. Besides the detection of objects, the prediction of encountering object’s
trajectory is one of the most crucial tasks to realize safe operation of autonomous systems. In this contribution,
a situated model approach for trajectory prediction as well as an evaluation approach of this model using the
Probability of Detection (POD) approach are developed. The reliability of this newly developed prediction model
relative to the prediction time is evaluated using the POD approach. The goal is to define the time interval beyond
which the reliability is less than the 90/95 (90 % detection probability at 95 % confidence interval) criterion. The
decision threshold is defined by the distance needed to avoid collision for the safe sailing of the vessel. The used
POD approach provides a new certification standard for prediction approaches and is therefore useful in safety-
critical systems. The situated prediction algorithm allows predicting the trajectory of waterway objects for a safety-
relevant period of time (minutes) using a simple parameter-based approach where some parameters are globally
trained and a local parameter is adapted based on past data using a sliding window approach. The past data consider
all local environmental and hydrodynamical effects affecting object’s motion in the next minutes. The predictions
are assumed as dependent on the different geometry trajectories like straight, curved, and sharp curved paths. The
approach uses the position data of vessels (known from AIS or radar data). Experimental data from a German
research inland vessel are used to validate the approach. Using the POD-based approach, it can be shown that the
local model predictions are reliable in defined time intervals and the reliability of the prediction horizon relative to
the locations of the waterways can be defined.
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1. Introduction

Shipping is the mainstay of global trade, as ap-
proximately 2/3 of the earth’s surface consists of
water. Human errors result in 75-96 % of the
accidents Gerhard (2012) and thus autonomous
ships are an important research topic. The topic
of autonomous inland vessels is more challenging
compared to sea vessels due to narrow distance re-
quired in applications like overtaking other vessels
or passing under a bridge Volkova et al. (2021).
Object detection and trajectory prediction mod-
ules are useful for autonomous vessels. Besides
object detection, trajectory prediction is also im-
portant for collision avoidance. Thus, autonomous
inland vessels need the intentions of surrounding
vessels and moving objects. Vessels operating in
narrow fields like rivers, channels, among others
require high accuracy of intention prediction. Be-
sides high accuracy, reliable information is also
required.

A standard performance measure has not yet
been defined for trajectory prediction approaches.
Evaluation and quantization of the performance
of approaches are challenging tasks for trajectory
prediction. In Graser et al. (2019) the along-track
error and cross-track error approach is explained.
The cross-track error reflects the true movement
direction of the vessel. The along-track error mea-
sures the error along the observed trajectory. In
this way, it is determined how well the predicted
velocity matches the actual velocity of the trajec-
tory. Similarity measure for trajectory prediction
evaluation is explained in Quehl et al. (2017).
Mean Euclidean distance (MED) in Bashir et al.
(2007) is used to define a point in time for each
trajectory from which onwards the comparison
starts. Dynamic Time Warping (DTW) is pro-
posed in Keogh and Pazzani (2000) as a trajectory
measure on general time series. The longest com-
mon subsequence (LCSS) measure (Buzan et al.,

128



129Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022)

2004) is a trajectory measure that evaluates for
howmany time steps two trajectories are matching
each other. CLEAR multiple object tracking accu-
racy (CLEAR-MOTA) (Bernardin and Stiefelha-
gen, 2008) is used to evaluate usually the track-
ing algorithms but can also be used for predic-
tion evaluation by defining the matches for each
predicted point similar to the LCSS measure so
that the accuracy can be calculated. The trajec-
tory Hausdorff similarity measure (THAU) in Lee
et al. (2007) describes a path measure approach
that consists of a weighted sum of several path
distances like, position and orientation, etc. to
consider the different aspects of the path. The
drawback of this similarity measure is bias-based
on the data set. Second, the approach is partly
based on the assumption that features that are
suitable to use for prediction are also features that
are predicted well.
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Fig. 1. The developed approach

A measure typically used to quantify the re-
liability of Nondestructive Testing (NDT) proce-
dures (Annis, 2009), Structural Health Monitoring
systems (SHM) (Ameyaw et al., 2020), and lately
classification approaches (Ameyaw et al., 2022) is
the Probability of detection (POD) measure. The
POD is a diagnostic tool as well as a reliability
measure and takes into account statistical variabil-
ity of sensors and measurements properties. Later
model-assisted POD (MAPOD) (Knopp et al.,
2007) is developed to improve the effectiveness
of POD models relative to time and cost. In this
contribution, the POD approach is implemented to
define the time interval with which the prediction
is reliable relative to determned decision thresh-
old.
A simple parameter-based approach is devel-

oped in (Thind and Söffker, 2022) to model the
Ship and Average Displacement Error (ADE) over
the prediction horizon as an evaluation measure
and is explained in figure 1. In this work AIS data
from a german inland vessel from the ’Prominent
Project’ (Orlovius and Christin, 2017) are used.
The model performance depends on different pa-
rameters like data quality, different sampling time,
environmental factors, and different operating sit-
uations. The ADE parameter does not allow to
completely define the model reliability, as other
parameters which are not considered might affect
the model performance.
The principal challenge relative to safety-critical
applications is the limited guarantee when ap-
proaches are applied to input data that are not
fully known. The prediction error depends on var-
ious parameters such as curve geometry. Defin-
ing thresholds and calculating the time frames
for which the predictions are less accurate cannot
be done using existing approaches because the
ground truth is not available during real appli-
cations and the reliability of predictions is not
assured. The POD approach is introduced to over-
come these limitations. The POD is a diagnostic
tool as well as a reliability metric. It is a proba-
bilistic method that allows researchers to evaluate
the performance of monitoring techniques by es-
timating the sensitivity and reliability of sensors
and measurement properties (Annis, 2009). The
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tool commonly used for expressing the reliabil-
ity is the POD curve. It is constructed by plot-
ting the accumulation of targets detected against
the target characteristic (size, length, depth, etc.).
A typical certification standard in safety-critical
systems is the 90/95 measure which represents
90 % detection probability at 95 % confidence
interval. The POD reliability measure is used in
this contribution as a reliability measure and also
as a diagnostic tool to assess the effect of the
prediction horizon relative to the prediction time.
The article is organized as follows: in section

2 the simple parameter-based approach is briefly
introduced, followed by the newly developed POD
reliability measure to define the time interval be-
yond which the reliability is less reliable using the
90/95 criterion in section 3. The experimental and
numerical results are explained in section 4 and in
the section 5, summary and conclusion are given.

2. Predictions using model-based
approach/ Simple parameter-based
approach

For the safety of vessels, collision avoidance is an
important module which requires accurate trajec-
tory predictions in the case of autonomous vessels
with respect to the behavior of other objects. An
accurate approach is required to realize trajectory
prediction. In this contribution, it is assumed that
only position measurements of encountering ships
are available. Thus developing a model based on
position measurements is discussed in this section.
The developed model should not be complex and
must be real-time applicable. The model-based
trajectory prediction method is developed and it
requires an accurate ship model in different en-
vironmental conditions. Models should be robust,
so that it can be applied in trajectory prediction,
localization and model-based control applications.
Due to the nonlinear relations between hydrody-
namics and complex rigid motion behavior of the
ship, the modeling process is complex.
A suitable simple parameter-based approach

with minimal number of parameters is developed
in (Thind et al., 2022). The system parameters
are obtained by online system identification. A
third-order system (1) defines the model with y as

output and u as input as

...
y + a33ÿ + a32ẏ + a31y = ksu. (1)

Fig. 2. Sliding window approach with showing local
parameter adaption

Thind and Söffker (2022)

Fig. 3. 1D explanation of sliding window
Thind and Söffker (2022)

A state space model ẋ = Ax + Bu + K and
y = Cx +Du is used, where A denotes the state
matrix, B the input matrix, C the output matrix,
D the transmission matrix, x the state vector, u
the input vector and y the output vector, and K
serves as input matrix of unknown inputs. The
extended equation assumes that input u via matrix
B is acting to the system as well as unknown input
denoted as ksu. The resulting model is therefore
composed of the global parameter matrices A, B,
C, D as well as the vector K assumed as local
adaptable. The unknown matrices A, B, C, and D
as well as K have to be identified by a suitable pro-
cedure within a first step denoted as data-driven
training (identification of parameters). The local
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parameter ks is estimated online from time history
of the motion of the ship in varying environments.
A sliding window approach is used to continu-
ously calculate the local parameter K. The data are
fed as an input-output (xk−b, xk+1)...(xk, xk+e)
states pair. The same procedure is done iteratively
as shown in figure 3. To every ship position at time
’tk’ the output belongs to the prediction at time
tk+e.

3. Probability of detection

Probability of detection is a certification tool used
to access the reliability of NDT/SHM measure-
ment procedures. Data used in producing POD
curves are categorized by the main POD control-
ling variables. These variables are either discrete
or continuous and can be classified as

(1) Hit/miss: produce binary statement or qual-
itative information about the existence of a
target.

(2) Signal-response: systems which also provide
some quantitative measure of target.

The data used in this work is continuous there-
fore the signal-response method will be used.

3.1. Signal-response approach to POD

The signal response approach is used when a
relationship between an increasing function and
a corresponding varying parameter exists. In the
derivation of the signal-response POD function, a
regression analysis of the observed or computed
data has to be realized (Fig. 4) (Annis, 2009). The
regression equation for a line of best fit to a given
data set is given by

y = b+mx, (2)

where m is the slope and b the intercept. The
Wald method is used to construct the confidence
bounds. Here the 95 % confidence bounds on y is
constructed by

y(a=0.95) = y + 1.645τy, (3)

where 1.645 is the z-score of 0.95 for a one-tailed
standard normal distribution and τy the standard
deviation of the regression line. The Delta method
is a statistical technique used to transition from

regression line to POD curve (Annis, 2009). The
confidence bounds are computed using the covari-
ance matrix for the mean and standard deviation
POD parameters μ and σ respectively. To estimate
the entries, the covariance matrix for parameters
and distribution around the regression line needs
to be determined. This is done using the Fisher’s
information matrix I. The information matrix is
derived by computing the maximum likelihood
function f of the standardized deviation z of the
regression line values. The entries of the informa-
tion matrix are calculated by the partial differen-
tial of the logarithm of the function f using the
parameters of Θ(m, b, τ) of the regression line.
From

zi =
(yi − (b+mxi))

τ
(4)

and

fi =
n∏

i=1

1

2π
e−

1
2 (z

2
i ) (5)

the information matrix I can be computed as

Iij = −E(
∂2

∂Θi∂Θj
log(f)) (6)

The inverse of the information matrix yields φ as

φ = I−1 =

⎡
⎣ σ2

b σbσm σbστ

σmσb σ2
m σmστ

στσb στσm σ2
τ

⎤
⎦ (7)

The mean μ and standard deviation σ of the POD
curve are calculated by μ = c−b

m , where c is the
decision threshold and σ = τ

m . The cumulative
distribution Φ is calculated as

Φ(μ, σ) =
1

2

[
1 + erf

x− μ√
2σ

]
. (8)

The POD function is derived as

POD(a) = Φ

[
a− μ

σ

]
. (9)

Using this formula, the POD-curve can be set up
for varying parameters. For this example, the vary-
ing parameter is the time horizon. The intercept β̂0

and slope β̂1 are statistically estimated from the
observations/measurements.
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4. Evaluation approach

As explained in section 3.1, the signal-response
method is used when a relationship between a
changing parameter and an evolving function or
response. The input to the approach is predictions
over time horizon of 180 s and constitutes the
changing parameter. For every second the corre-
sponding error between the actual trajectory and
the prediction model in meters is evaluated. The
error is in the latitude x and longitude y directions.
The relation

√
x2 + y2 is computed to obtain a

single representation of the error.

4.1. AIS- Dataset

To test the approaches the data from a german in-
land vessel from the ’Prominent Project’ Orlovius
and Christin (2017) are used. The data are pro-
vided by ’the Federal Waterways Engineering and
Research Institute’ (BAW) (Orlovius and Christin,
2017), which were part of the ’PROMINENT’
project (Promoting Innovation in the Inland Wa-
terways Transport Sector supported by Horizon
2020 programme, European Commission). The
length of the test vessel is 135 meters and the
width is 14 meters. The data are transmitted
through 27 message channels. These messages
include navigational information, such as time,
course over ground, speed over ground, position,
the IMO number of the ship, actual draft, depar-
ture, destination, flow velocity etc. The dataset
consists of time-series data of one year with a
sampling rate of one second. The data contain
information about sailing on the Rhine river in up-
stream/downstream, loaded/unloaded, and of dif-
ferent water level. It is assumed that the data
contain different behaviors depending on varying
water levels during different seasons. To test the
POD approach, the euclidean distance error is
calculated over the prediction horizon of 180 sec-
onds using approach explained in section 2. The
ADE error serves as the response to the prediction
horizon (target).

4.2. POD generation process

Based on the computed response values, the
signal-response method is utilized in this section

to generate the POD. The aim is to establish a
POD characterization to illustrate reliability of the
prediction horizon. Four models comprising com-
binations of logarithmic and linear scales (Fig. 4 )
are established to ascertain model described by a
straight line and approximately constant variance.
The criteria for a valid model are (Annis, 2009)

i. Linearity of the parameters: E(yi|X) = xiβ,
where xi is the i− th row of X ,

ii. Uniform variance: var(yi|X) = σ2, i =

1, 2, 3, ..., n and
iii. Uncorrelated observations: cov(yi, yj |X) =

0, (i �= j).
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Fig. 4. Regression models a: x vs. y b: log x vs. y c: x
vs. log y d: log x. vs. log y

In this example, the model that best describes
the above criteria is the log-log plot (model 4
d) and is therefore selected for further analysis.
Regression analysis is implemented on model 4
b using maximum likelihood estimation as it is
better suited for censored data in comparison to
known methods like ordinary least squares.
The inspection threshold (minimum detectable

data), saturation threshold (maximum detectable
data), decision threshold, confidence bounds, and
prediction bounds are constructed using the for-
mulation from section 3.1 as illustrated in Fig. 5.
Accordingly, the confidence bounds serve as

certification criteria, while the prediction bounds



133Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022)

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

2

3

5

7

2

3

5

7

2

3

5

7

b
^

=0.16744

m̂ =0.88638

τ̂ =0.2288216

T
^

threshold =0.2195503

T
^

decision =2.70805

n
total =1448

n targets =181

Inspection threshold

Decision threshold

Regression line

Confidence bounds

Prediction bounds

222 333 5 55 777

D
is

ta
n
c
e
 [
m

]

Time [s]

Fig. 5. Data distribution for logarithmic scale.

serve as boundaries to ensure that of every 100

new observations, 95 should fall within them. Ad-
ditionally, cumulative density functions (CDFs)
are constructed for the data distribution. Based on
the CDF area above the threshold, the POD curve
is generated (Figure 6).
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Fig. 6. Regression analysis.

The POD curve is analogous to the regression
line. The confidence bounds about the regression
line are used to construct the 95 % bounds around
the POD curve. The POD curves corresponding to
each trajectory for loaded downstream condition
are shown in Fig. 7. The 90/95 POD value T90/95
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Fig. 7. POD curves for loaded downstream.

for trajectory 1 is 20.06 s. This implies for a
decision threshold of 15 meters, the model is able
to predict accurately till 20.06 s beyond which
the prediction horizon is inaccurate with 90 %
probability with a 95 % reliability. Seven other
trajectories for loaded downstream condition are
analyzed.
The procedure is repeated for three other condi-
tions namely upstream loaded, downstream un-
loaded, and upstream unloaded. The correspond-
ing 90/95 POD values are shown in Tab. 1.

Loaded
downstream

Loaded
upstream

Unloaded
downstream

Unloaded
Upstream

Traj.
POD
[s]

POD
[s]

POD
[s]

POD
[s]

1 20.06 22.91 24.94 20.42
2 13.90 29.45 22.30 27.04
3 17.43 21.66 17.86 26.46
4 21.92 19.31 25.56 25.50
5 21.57 21.19 22.63 21.18
6 26.83 16.39 23.82 25.24
7 23.87 17.86 25.17 20.34
8 24.91 23.13 21.06 24.33

The results in Table 1 show the time horizon for
each track for which the prediction is considered
to be reliable with the 90/95 certification criterion.
This will be particularly helpful in the context of
autonomous navigation because a safe prediction
horizon can be defined for each trajectory and
scenario therefore helping define safe distance and
interaction between vessels. The introduced ap-
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proach permits a new POD-based certification and
comparison method for prediction models. Evalu-
ation of prediction models relative to prediction
time horizon is not possible using known and ex-
isting measures introduced in the literature review.
However the introduced POD approach makes it
possible to statistically determine a set point (here:
90/95 criterion) beyond which the prediction is
not reliable in the aforementioned sense.

5. Conclusion

In this contribution a new evaluation measure
on the performance of prediction models using
POD approach is presented. The safety distance
required for the collision-free sailing of vessels
defines the threshold. The reliability of the model
is determined for the prediction horizon under
which it is known that the predictions will be
always 90 % under the defined error limit at a
95 % confidence level. This is needed because the
evaluation process of known approaches are non-
parametric and hence not suitable to evaluate the
effect of process parameters on prediction hori-
zon. The results indicate the model performance
and prediction reliability changes in different sit-
uations/conditions. As a result, the local parame-
ter must be adapted at variable duration, and the
effect of other process parameters should also be
considered.
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